קרא את הגרסה המעודכנת של תוכן זה ועוד על Node בכתובת jscomplete.com/node-beyond-basics .
צומת משתמשת בשני מודולי ליבה לניהול תלות במודולים:
require
מודול, אשר נראה כאילו הוא מיועד על ההיקף הגלובלי - אין צורךrequire('require')
.module
מודול, אשר מופיע גם להיות נגיש בהיקף הגלובלי - אין צורךrequire('module')
.
אתה יכול לחשוב על require
המודול כפקודה ועל module
המודול כמארגן את כל המודולים הנדרשים.
דרישה למודול בצומת אינה כל כך מורכבת של מושג.
const config = require('/path/to/file');
האובייקט העיקרי שיוצא על ידי require
המודול הוא פונקציה (כמשמש בדוגמה לעיל). כאשר צומת קוראת require()
לפונקציה זו עם נתיב קבצים מקומי כארגומנט היחיד של הפונקציה, צומת עוברת את רצף השלבים הבא:
- פתרון : כדי למצוא את הנתיב המוחלט של הקובץ.
- טוען : לקביעת סוג תוכן הקובץ.
- עטיפה : כדי לתת לקובץ את היקפו הפרטי. זה מה שהופך את האובייקטים
require
והן אתmodule
האובייקטים למקומיים לכל קובץ שאנחנו זקוקים לו. - הערכה : זה מה שה- VM עושה בסופו של דבר עם הקוד הטעון.
- אחסון במטמון : כך שכשאנחנו נדרשים שוב את הקובץ הזה, לא נעבור על כל השלבים בפעם אחרת.
במאמר זה אנסה להסביר בדוגמאות את השלבים השונים הללו וכיצד הם משפיעים על אופן כתיבת המודולים ב- Node.
תן לי קודם ליצור מדריך לארח את כל הדוגמאות באמצעות המסוף שלי:
mkdir ~/learn-node && cd ~/learn-node
כל הפקודות בשאר מאמר זה יופעלו מבפנים ~/learn-node
.
פתרון נתיב מקומי
הרשו לי להציג בפניכם את module
האובייקט. אתה יכול לבדוק זאת בפגישת REPL פשוטה:
~/learn-node $ node > module Module { id: '', exports: {}, parent: undefined, filename: null, loaded: false, children: [], paths: [ ... ] }
כל אובייקט מודול מקבל id
מאפיין לזהות אותו. זה id
בדרך כלל הנתיב המלא לקובץ, אך בפגישת REPL זה פשוט.
למודולי הצומת קשר אחד לאחד עם קבצים במערכת הקבצים. אנו דורשים מודול על ידי טעינת תוכן הקובץ בזיכרון.
עם זאת, מכיוון שצומת מאפשר דרכים רבות לדרוש קובץ (למשל, עם נתיב יחסי או נתיב שהוגדר מראש), לפני שנוכל לטעון את תוכן הקובץ בזיכרון אנו צריכים למצוא את המיקום המוחלט של אותו קובץ.
כאשר אנו זקוקים 'find-me'
למודול, מבלי לציין נתיב:
require('find-me');
הצומת יחפש find-me.js
בכל הנתיבים שצוינו על ידי module.paths
- לפי הסדר.
~/learn-node $ node > module.paths [ '/Users/samer/learn-node/repl/node_modules', '/Users/samer/learn-node/node_modules', '/Users/samer/node_modules', '/Users/node_modules', '/node_modules', '/Users/samer/.node_modules', '/Users/samer/.node_libraries', '/usr/local/Cellar/node/7.7.1/lib/node' ]
רשימת הנתיבים היא בעצם רשימה של ספריות node_modules תחת כל ספריה מהספרייה הנוכחית לספריית הבסיס. הוא כולל גם כמה ספריות מדור קודם שהשימוש בהם אינו מומלץ.
אם הצומת לא יכול למצוא find-me.js
באף אחד מהנתיבים הללו, הוא יזרוק "לא יכול למצוא שגיאת מודול".
~/learn-node $ node > require('find-me') Error: Cannot find module 'find-me' at Function.Module._resolveFilename (module.js:470:15) at Function.Module._load (module.js:418:25) at Module.require (module.js:498:17) at require (internal/module.js:20:19) at repl:1:1 at ContextifyScript.Script.runInThisContext (vm.js:23:33) at REPLServer.defaultEval (repl.js:336:29) at bound (domain.js:280:14) at REPLServer.runBound [as eval] (domain.js:293:12) at REPLServer.onLine (repl.js:533:10)
אם אתה יוצר כעת node_modules
ספריה מקומית ושם שם find-me.js
שם, require('find-me')
השורה תמצא אותה.
~/learn-node $ mkdir node_modules ~/learn-node $ echo "console.log('I am not lost');" > node_modules/find-me.js ~/learn-node $ node > require('find-me'); I am not lost {} >
אם find-me.js
היה קיים קובץ אחר באחד מהנתיבים האחרים, למשל, אם יש לנו node_modules
ספריה מתחת לספריה הביתית ויש לנו שם find-me.js
קובץ אחר :
$ mkdir ~/node_modules $ echo "console.log('I am the root of all problems');" > ~/node_modules/find-me.js
כאשר אנו require('find-me')
מתוך learn-node
הספרייה - שיש לה משלה node_modules/find-me.js
, find-me.js
הקובץ מתחת לספריה הביתית לא נטען כלל:
~/learn-node $ node > require('find-me') I am not lost {} >
אם נסיר את node_modules
הספרייה המקומית תחת ~/learn-node
וננסה לדרוש find-me
פעם נוספת, node_modules
ישמש את הקובץ בספריית הבית :
~/learn-node $ rm -r node_modules/ ~/learn-node $ node > require('find-me') I am the root of all problems {} >
דורש תיקיה
מודולים לא חייבים להיות קבצים. אנו יכולים גם ליצור find-me
תיקייה תחתיה node_modules
ולמקם שם index.js
קובץ. באותה require('find-me')
שורה תשתמש index.js
בקובץ התיקיה ההיא :
~/learn-node $ mkdir -p node_modules/find-me ~/learn-node $ echo "console.log('Found again.');" > node_modules/find-me/index.js ~/learn-node $ node > require('find-me'); Found again. {} >
שים לב כיצד הוא התעלם node_modules
שוב מהדרך של ספריית הבית מכיוון שיש לנו דרך מקומית כעת.
index.js
קובץ ישמש כברירת מחדל כאשר אנו דורשים תיקייה, אבל אנחנו יכולים לשלוט על מה שם הקובץ כדי להתחיל עם תחת התיקייה באמצעות main
הנכס package.json
. לדוגמא, כדי להפוך את require('find-me')
הקו לפתור לקובץ אחר מתחת find-me
לתיקיה, כל שעלינו לעשות הוא להוסיף package.json
קובץ שם ולציין באיזה קובץ יש להשתמש לפתרון תיקיה זו:
~/learn-node $ echo "console.log('I rule');" > node_modules/find-me/start.js ~/learn-node $ echo '{ "name": "find-me-folder", "main": "start.js" }' > node_modules/find-me/package.json ~/learn-node $ node > require('find-me'); I rule {} >
דורש.פתור
אם ברצונך לפתור רק את המודול ולא לבצע אותו, תוכל להשתמש require.resolve
בפונקציה. פעולה זו מתנהגת בדיוק כמו require
הפונקציה הראשית , אך אינה טוענת את הקובץ. זה עדיין יזרוק שגיאה אם הקובץ לא קיים והוא יחזיר את הנתיב המלא לקובץ כאשר הוא נמצא.
> require.resolve('find-me'); '/Users/samer/learn-node/node_modules/find-me/start.js' > require.resolve('not-there'); Error: Cannot find module 'not-there' at Function.Module._resolveFilename (module.js:470:15) at Function.resolve (internal/module.js:27:19) at repl:1:9 at ContextifyScript.Script.runInThisContext (vm.js:23:33) at REPLServer.defaultEval (repl.js:336:29) at bound (domain.js:280:14) at REPLServer.runBound [as eval] (domain.js:293:12) at REPLServer.onLine (repl.js:533:10) at emitOne (events.js:101:20) at REPLServer.emit (events.js:191:7) >
זה יכול לשמש, למשל, כדי לבדוק אם מותקנת חבילה אופציונלית או לא ולהשתמש בה רק כשהיא זמינה.
נתיבים יחסיים ומוחלטים
מלבד פתרון מודולים מתוך node_modules
הספריות, אנו יכולים גם למקם את המודול בכל מקום שנרצה ולדרוש אותו עם נתיבים יחסית ( ./
ו ../
) או עם נתיבים מוחלטים החל מ /
.
אם, למשל, find-me.js
הקובץ היה תחת lib
תיקיה במקום node_modules
התיקייה, נוכל לדרוש זאת עם:
require('./lib/find-me');
יחס הורה וילד בין קבצים
צור lib/util.js
קובץ והוסף שם console.log
שורה כדי לזהות אותו. כמו כן, האובייקט עצמו:console.log
module
~/learn-node $ mkdir lib ~/learn-node $ echo "console.log('In util', module);" > lib/util.js
בצע את אותו הדבר עבור index.js
קובץ, וזה מה שנבצע באמצעות הפקודה node. הפוך index.js
קובץ זה לדרוש lib/util.js
:
~/learn-node $ echo "console.log('In index', module); require('./lib/util');" > index.js
Now execute the index.js
file with node:
~/learn-node $ node index.js In index Module { id: '.', exports: {}, parent: null, filename: '/Users/samer/learn-node/index.js', loaded: false, children: [], paths: [ ... ] } In util Module { id: '/Users/samer/learn-node/lib/util.js', exports: {}, parent: Module { id: '.', exports: {}, parent: null, filename: '/Users/samer/learn-node/index.js', loaded: false, children: [ [Circular] ], paths: [...] }, filename: '/Users/samer/learn-node/lib/util.js', loaded: false, children: [], paths: [...] }
Note how the main index
module (id: '.')
is now listed as the parent for the lib/util
module. However, the lib/util
module was not listed as a child of the index
module. Instead, we have the [Circular]
value there because this is a circular reference. If Node prints the lib/util
module object, it will go into an infinite loop. That’s why it simply replaces the lib/util
reference with [Circular]
.
More importantly now, what happens if the lib/util
module required the main index
module? This is where we get into what’s known as the circular modular dependency, which is allowed in Node.
To understand it better, let’s first understand a few other concepts on the module object.
exports, module.exports, and synchronous loading of modules
In any module, exports is a special object. If you’ve noticed above, every time we’ve printed a module object, it had an exports property which has been an empty object so far. We can add any attribute to this special exports object. For example, let’s export an id attribute for index.js
and lib/util.js
:
// Add the following line at the top of lib/util.js exports.id = 'lib/util'; // Add the following line at the top of index.js exports.id = 'index';
When we now execute index.js
, we’ll see these attributes as managed on each file’s module
object:
~/learn-node $ node index.js In index Module { id: '.', exports: { id: 'index' }, loaded: false, ... } In util Module { id: '/Users/samer/learn-node/lib/util.js', exports: { id: 'lib/util' }, parent: Module { id: '.', exports: { id: 'index' }, loaded: false, ... }, loaded: false, ... }
I’ve removed some attributes in the above output to keep it brief, but note how the exports
object now has the attributes we defined in each module. You can put as many attributes as you want on that exports object, and you can actually change the whole object to be something else. For example, to change the exports object to be a function instead of an object, we do the following:
// Add the following line in index.js before the console.log module.exports = function() {};
When you run index.js
now, you’ll see how the exports
object is a function:
~/learn-node $ node index.js In index Module { id: '.', exports: [Function], loaded: false, ... }
Note how we did not do exports = function() {}
to make the exports
object into a function. We can’t actually do that because the exports
variable inside each module is just a reference to module.exports
which manages the exported properties. When we reassign the exports
variable, that reference is lost and we would be introducing a new variable instead of changing the module.exports
object.
The module.exports
object in every module is what the require
function returns when we require that module. For example, change the require('./lib/util')
line in index.js
into:
const UTIL = require('./lib/util'); console.log('UTIL:', UTIL);
The above will capture the properties exported in lib/util
into the UTIL
constant. When we run index.js
now, the very last line will output:
UTIL: { id: 'lib/util' }
Let’s also talk about the loaded
attribute on every module. So far, every time we printed a module object, we saw a loaded
attribute on that object with a value of false
.
The module
module uses the loaded
attribute to track which modules have been loaded (true value) and which modules are still being loaded (false value). We can, for example, see the index.js
module fully loaded if we print its module
object on the next cycle of the event loop using a setImmediate
call:
// In index.js setImmediate(() => { console.log('The index.js module object is now loaded!', module) });
The output of that would be:
The index.js module object is now loaded! Module { id: '.', exports: [Function], parent: null, filename: '/Users/samer/learn-node/index.js', loaded: true, children: [ Module { id: '/Users/samer/learn-node/lib/util.js', exports: [Object], parent: [Circular], filename: '/Users/samer/learn-node/lib/util.js', loaded: true, children: [], paths: [Object] } ], paths: [ '/Users/samer/learn-node/node_modules', '/Users/samer/node_modules', '/Users/node_modules', '/node_modules' ] }
Note how in this delayed console.log
output both lib/util.js
and index.js
are fully loaded.
The exports
object becomes complete when Node finishes loading the module (and labels it so). The whole process of requiring/loading a module is synchronous. That’s why we were able to see the modules fully loaded after one cycle of the event loop.
This also means that we cannot change the exports
object asynchronously. We can’t, for example, do the following in any module:
fs.readFile('/etc/passwd', (err, data) => { if (err) throw err; exports.data = data; // Will not work. });
Circular module dependency
Let’s now try to answer the important question about circular dependency in Node: What happens when module 1 requires module 2, and module 2 requires module 1?
To find out, let’s create the following two files under lib/
, module1.js
and module2.js
and have them require each other:
// lib/module1.js exports.a = 1; require('./module2'); exports.b = 2; exports.c = 3; // lib/module2.js const Module1 = require('./module1'); console.log('Module1 is partially loaded here', Module1);
When we run module1.js
we see the following:
~/learn-node $ node lib/module1.js Module1 is partially loaded here { a: 1 }
We required module2
before module1
was fully loaded, and since module2
required module1
while it wasn’t fully loaded, what we get from the exports
object at that point are all the properties exported prior to the circular dependency. Only the a
property was reported because both b
and c
were exported after module2
required and printed module1
.
Node keeps this really simple. During the loading of a module, it builds the exports
object. You can require the module before it’s done loading and you’ll just get a partial exports object with whatever was defined so far.
JSON and C/C++ addons
We can natively require JSON files and C++ addon files with the require function. You don’t even need to specify a file extension to do so.
If a file extension was not specified, the first thing Node will try to resolve is a .js
file. If it can’t find a .js
file, it will try a .json
file and it will parse the .json
file if found as a JSON text file. After that, it will try to find a binary .node
file. However, to remove ambiguity, you should probably specify a file extension when requiring anything other than .js
files.
Requiring JSON files is useful if, for example, everything you need to manage in that file is some static configuration values, or some values that you periodically read from an external source. For example, if we had the following config.json
file:
{ "host": "localhost", "port": 8080 }
We can require it directly like this:
const { host, port } = require('./config'); console.log(`Server will run at //${host}:${port}`);
Running the above code will have this output:
Server will run at //localhost:8080
If Node can’t find a .js
or a .json
file, it will look for a .node
file and it would interpret the file as a compiled addon module.
The Node documentation site has a sample addon file which is written in C++. It’s a simple module that exposes a hello()
function and the hello function outputs “world.”
You can use the node-gyp
package to compile and build the .cc
file into a .node
file. You just need to configure a binding.gyp file to tell node-gyp
what to do.
Once you have the addon.node
file (or whatever name you specify in binding.gyp
) then you can natively require it just like any other module:
const addon = require('./addon'); console.log(addon.hello());
We can actually see the support of the three extensions by looking at require.extensions
.

Looking at the functions for each extension, you can clearly see what Node will do with each. It uses module._compile
for .js
files, JSON.parse
for .json
files, and process.dlopen
for .node
files.
All code you write in Node will be wrapped in functions
Node’s wrapping of modules is often misunderstood. To understand it, let me remind you about the exports
/module.exports
relation.
We can use the exports
object to export properties, but we cannot replace the exports
object directly because it’s just a reference to module.exports
exports.id = 42; // This is ok. exports = { id: 42 }; // This will not work. module.exports = { id: 42 }; // This is ok.
How exactly does this exports
object, which appears to be global for every module, get defined as a reference on the module
object?
Let me ask one more question before explaining Node’s wrapping process.
In a browser, when we declare a variable in a script like this:
var answer = 42;
That answer
variable will be globally available in all scripts after the script that defined it.
This is not the case in Node. When we define a variable in one module, the other modules in the program will not have access to that variable. So how come variables in Node are magically scoped?
The answer is simple. Before compiling a module, Node wraps the module code in a function, which we can inspect using the wrapper
property of the module
module.
~ $ node > require('module').wrapper [ '(function (exports, require, module, __filename, __dirname) { ', '\n});' ] >
Node does not execute any code you write in a file directly. It executes this wrapper function which will have your code in its body. This is what keeps the top-level variables that are defined in any module scoped to that module.
This wrapper function has 5 arguments: exports
, require
, module
, __filename
, and __dirname
. This is what makes them appear to look global when in fact they are specific to each module.
All of these arguments get their values when Node executes the wrapper function. exports
is defined as a reference to module.exports
prior to that. require
and module
are both specific to the function to be executed, and __filename
/__dirname
variables will contain the wrapped module’s absolute filename and directory path.
You can see this wrapping in action if you run a script with a problem on its first line:
~/learn-node $ echo "euaohseu" > bad.js ~/learn-node $ node bad.js ~/bad.js:1 (function (exports, require, module, __filename, __dirname) { euaohseu ^ ReferenceError: euaohseu is not defined
Note how the first line of the script as reported above was the wrapper function, not the bad reference.
Moreover, since every module gets wrapped in a function, we can actually access that function’s arguments with the arguments
keyword:
~/learn-node $ echo "console.log(arguments)" > index.js ~/learn-node $ node index.js { '0': {}, '1': { [Function: require] resolve: [Function: resolve], main: Module { id: '.', exports: {}, parent: null, filename: '/Users/samer/index.js', loaded: false, children: [], paths: [Object] }, extensions: { ... }, cache: { '/Users/samer/index.js': [Object] } }, '2': Module { id: '.', exports: {}, parent: null, filename: '/Users/samer/index.js', loaded: false, children: [], paths: [ ... ] }, '3': '/Users/samer/index.js', '4': '/Users/samer' }
The first argument is the exports
object, which starts empty. Then we have the require
/module
objects, both of which are instances that are associated with the index.js
file that we’re executing. They are not global variables. The last 2 arguments are the file’s path and its directory path.
The wrapping function’s return value is module.exports
. Inside the wrapped function, we can use the exports
object to change the properties of module.exports
, but we can’t reassign exports itself because it’s just a reference.
What happens is roughly equivalent to:
function (require, module, __filename, __dirname) { let exports = module.exports; // Your Code... return module.exports; }
If we change the whole exports
object, it would no longer be a reference to module.exports
. This is the way JavaScript reference objects work everywhere, not just in this context.
The require object
There is nothing special about require
. It’s an object that acts mainly as a function that takes a module name or path and returns the module.exports
object. We can simply override the require
object with our own logic if we want to.
For example, maybe for testing purposes, we want every require
call to be mocked by default and just return a fake object instead of the required module exports object. This simple reassignment of require will do the trick:
require = function() { return { mocked: true }; }
After doing the above reassignment of require
, every require('something')
call in the script will just return the mocked object.
The require object also has properties of its own. We’ve seen the resolve
property, which is a function that performs only the resolving step of the require process. We’ve also seen require.extensions
above.
There is also require.main
which can be helpful to determine if the script is being required or run directly.
Say, for example, that we have this simple printInFrame
function in print-in-frame.js
:
// In print-in-frame.js const printInFrame = (size, header) => { console.log('*'.repeat(size)); console.log(header); console.log('*'.repeat(size)); };
The function takes a numeric argument size
and a string argument header
and it prints that header in a frame of stars controlled by the size we specify.
We want to use this file in two ways:
- From the command line directly like this:
~/learn-node $ node print-in-frame 8 Hello
Passing 8 and Hello as command line arguments to print “Hello” in a frame of 8 stars.
2. With require
. Assuming the required module will export the printInFrame
function and we can just call it:
const print = require('./print-in-frame'); print(5, 'Hey');
To print the header “Hey” in a frame of 5 stars.
Those are two different usages. We need a way to determine if the file is being run as a stand-alone script or if it is being required by other scripts.
This is where we can use this simple if statement:
if (require.main === module) { // The file is being executed directly (not with require) }
So we can use this condition to satisfy the usage requirements above by invoking the printInFrame function differently:
// In print-in-frame.js const printInFrame = (size, header) => { console.log('*'.repeat(size)); console.log(header); console.log('*'.repeat(size)); }; if (require.main === module) { printInFrame(process.argv[2], process.argv[3]); } else { module.exports = printInFrame; }
When the file is not being required, we just call the printInFrame
function with process.argv
elements. Otherwise, we just change the module.exports
object to be the printInFrame
function itself.
All modules will be cached
Caching is important to understand. Let me use a simple example to demonstrate it.
Say that you have the following ascii-art.js
file that prints a cool looking header:

We want to display this header every time we require the file. So when we require the file twice, we want the header to show up twice.
require('./ascii-art') // will show the header. require('./ascii-art') // will not show the header.
The second require will not show the header because of modules’ caching. Node caches the first call and does not load the file on the second call.
We can see this cache by printing require.cache
after the first require. The cache registry is simply an object that has a property for every required module. Those properties values are the module
objects used for each module. We can simply delete a property from that require.cache
object to invalidate that cache. If we do that, Node will re-load the module to re-cache it.
However, this is not the most efficient solution for this case. The simple solution is to wrap the log line in ascii-art.js
with a function and export that function. This way, when we require the ascii-art.js
file, we get a function that we can execute to invoke the log line every time:
require('./ascii-art')() // will show the header. require('./ascii-art')() // will also show the header.
That’s all I have for this topic. Thanks for reading. Until next time!
Learning React or Node? Checkout my books:
- Learn React.js by Building Games
- Node.js Beyond the Basics